GLOBALFOUNDRIES Silicon Photonics

Vikas Gupta
September 1st, 2020
1 GLOBALFOUNDRIES Silicon Photonics Introduction

2 Key Differentiating Features
 • Monolithic Integration
 • Laser Attach
 • Fiber Attach
 • 2.5D Integration
 • CPO

3 Summary
Malta site – home of FinFETs, RF and Silicon Photonics

- **Market Segments**: Computing, mobile, wired and wireless infrastructure
- **Employees**: ~2,900
- **Differentiated Technologies**: 14/12LP, 12LP+, 12RF, 45RF Silicon Photonics
- **Operating since**: 2011
- **NY Gov’t grants**: $1.5B
- **Manufacturing capacity**: 500k (300mm wafers/year)
What is silicon photonics, and why use it?

SiPh has multiple advantages over “electrons” and alternative technology solutions:

- SiPh is fabrication of active & passive photonics components using silicon VLSI processes.
- Differentiates from indium phosphide (InP) by offering:
 - High-volume manufacturing
 - Higher level of integration
 - Compatibility with silicon processing
 - Lower cost ($/Gbps)
 - Lower power consumption

<table>
<thead>
<tr>
<th>Carrier</th>
<th>Active</th>
<th>Passives</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic</td>
<td>Electrons</td>
<td>Transistors Diodes</td>
<td>Resistors Capacitors Inductors</td>
</tr>
<tr>
<td>Photonic</td>
<td>Photons</td>
<td>Lasers Modulators Detectors</td>
<td>Wave guides Phase rotators Heaters Spot size convertors</td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>Building block</th>
<th>SiPh</th>
<th>InP</th>
<th>SiN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive components</td>
<td>✗ ✗ ✗</td>
<td>✗</td>
<td>✗ ✗ ✗</td>
</tr>
<tr>
<td>Lasers</td>
<td>✗</td>
<td>✗ ✗ ✗</td>
<td></td>
</tr>
<tr>
<td>Modulators</td>
<td>✗ ✗ ✗</td>
<td>✗ ✗ ✗</td>
<td>✗</td>
</tr>
<tr>
<td>Switches</td>
<td>✗ ✗ ✗ ✗ ✗</td>
<td></td>
<td>✗ ✗ ✗</td>
</tr>
<tr>
<td>Optical amplifiers</td>
<td>✗</td>
<td>✗ ✗ ✗</td>
<td></td>
</tr>
<tr>
<td>Detectors</td>
<td>✗ ✗ ✗</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Images: OFC
Photonics application space

GF SiPh solutions target broad range of applications

Source: Adapted from Yole Silicon Photonics and PIC devices, 2019
GF Silicon Photonics helps you harness the power of light for optical Transceiver applications.

- **Driver**
 - SiGe 8XP, 9HP

- **Transimpedance amplifier**
 - SiGe 8XP, 9HP
 - 45CLO monolithic

- **Photonics IC**
 - (modulator & photodetector)
 - 90WG, 45CLO

- **Laser**
 - Integration into PIC
45CLO feature set
Focus on data com & co-packaged optics

Legend:
- CMOS
- Optical

- MZI modulators
- Ring modulators
- Ge EPI PD
- Waveguides, passives
- BEOL passives, inductors, VNcap
- RF CMOS, standard cell, GPIO, ESD, eFuse, TIA, driver, precision resistor,
- Top grating couplers
- Edge fiber couple, passive or active align
- Direct laser attach
- Polarization splitter & polarization rotator
- Ridge, Rib WGs, Bends, tapers, Directional couplers, cross WIC, gratings, absorbers
- Thermal phase shifters standard & undercut
- 4x MUX/DeMUX tunable
The value of monolithic integration
Cost efficiencies combined with performance advantages

<table>
<thead>
<tr>
<th>Electronic technology for hybrid integration</th>
<th>GF monolithic CMOS - SiPh</th>
</tr>
</thead>
<tbody>
<tr>
<td>14FF</td>
<td>22FDX®</td>
</tr>
<tr>
<td>nMOS Ft</td>
<td>270GHz</td>
</tr>
<tr>
<td>Supply V</td>
<td>0.8V</td>
</tr>
<tr>
<td>Substrate</td>
<td>BULK</td>
</tr>
<tr>
<td>Mx res & rap</td>
<td>High</td>
</tr>
<tr>
<td>Parasitic load</td>
<td>5-30fF</td>
</tr>
<tr>
<td>ESD cap</td>
<td>~50fF</td>
</tr>
<tr>
<td>Estimated TIA 3dB BW @1kΩ gain</td>
<td>24 GHz *(70fF)</td>
</tr>
</tbody>
</table>

High-performance, 45 nm SOI RF-grade CMOS FETs integrated with SiPh devices on chip

- Dense channel integration & **reduced packaging costs**
- Significant TIA bandwidth boost due to **low input capacitance**
- **ESD elimination** further reduces input capacitance to ~20fF
Laser attach development
On-chip placement is a game changer

- Silicon does not intrinsically lase; III-V based material needed for laser
- GF approach: Passively place InP laser in laser trench using fiducial marks
- Laser placement on SiPh chip has potential to significantly reduce packaging costs for Datacom, LiDAR & photonic computing applications
Passive fiber attach using V-grooves

Significant value add for high-count fiber arrays where active alignment of fibers is not possible

- Low loss, broadband, passive alignment of SMF

Needed for co-packaged optics (CPO), which minimize distance between optical & electrical chips
Enabling Reflow compatible bump features

2.5D Packaging integration

Support for Copper Receiver pads, Laser attach bond pads, Copper Pillars and Copper u-pillar bumps
Packaging Standardization – many variations using GF PIC technology

CPO JDF*

From Co-Packaged Optical Module Discussion Document - Facebook 9/2019

<table>
<thead>
<tr>
<th>Company</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-Packaging approach</td>
<td>2.5D - Si Interposer & cavity laminate</td>
<td>2.5D – organic Interposer</td>
<td>Fan-out package & cavity laminate</td>
<td>Complex dual side Organic packaging w/ cut-out</td>
</tr>
<tr>
<td>Laser source</td>
<td>Off module</td>
<td>On Module</td>
<td>Off Module</td>
<td>On Module</td>
</tr>
<tr>
<td>Fiber Attach</td>
<td>GF passive</td>
<td>GF Passive</td>
<td>GF Passive</td>
<td>GF Passive</td>
</tr>
<tr>
<td>Fiber count per PIC (SMF)</td>
<td>24</td>
<td>16</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>Other key PIC features supporting Co-package</td>
<td>Flip chip compatible, Cu u-pillars,</td>
<td>Laser cavity w/ multiple direct laser attach on PIC, Cu-P receive pads</td>
<td>Cu u-pillar receive pads, backside grind, Reflow compatible</td>
<td>Cu-P receive pads, Reflow compatible, 2-sided PIC FA</td>
</tr>
<tr>
<td>Packaging portable to Microelectronic OSATs?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

*Figure 3: Example of an optical module for CPO applications
Figure 3: Example schematic of a 3D IC CPO assembly
Summary

• GF Silicon Photonics technology is based on monolithic integration of RF CMOS and optical devices brings unique performance advantages
 • Reduction of interconnect parasitics
 • Close proximity of CMOS and SiPh allow to build high bandwidth dense transceivers
• GF Silicon Photonics technology has differentiating packaging solutions integrated into the technology to allow for efficient and cost effective packaging solutions extendable to co-packaged optics requirements.
Thank you

Vikas Gupta
vikas.gupta1@globalfoundries.com

The information contained herein is the property of GLOBALFOUNDRIES and/or its licensors.
This document is for informational purposes only, is current only as of the date of publication and is subject to change by GLOBALFOUNDRIES at any time without notice.
GLOBALFOUNDRIES, the GLOBALFOUNDRIES logo and combinations thereof are trademarks of GLOBALFOUNDRIES Inc. in the United States and/or other jurisdictions. Other product or service names are for identification purposes only and may be trademarks or service marks of their respective owners.
© GLOBALFOUNDRIES Inc. 2020. Unless otherwise indicated, all rights reserved. Do not copy or redistribute except as expressly permitted by GLOBALFOUNDRIES.